Bronnen

Alves E.Q., Macario K., Ascough P., Bronk Ramsey C., 2018. The worldwide marine radiocarbon reservoir effect: Definitions, mechanisms, and prospects. Reviews of Geophysics 56, 278–305. https://doi.org/10.1002/2017RG000588
Amundson R., Austin A.T., Schuur E.a.G., Yoo K., Matzek V., Kendall C., Uebersax A., Brenner D., Baisden W.T., 2003. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles 17, 1–10. https://doi.org/10.1029/2002GB001903
Annaert R., Boudin M., Deforce K., Ervynck A., Haneca K., Lentacker A., Snoeck C., 2020. Anomalous radiocarbon dates from the early medieval cremation graves from Broechem (Flanders, Belgium): Reservoir or old wood effects? Radiocarbon 62, 269–288. https://doi.org/10.1017/RDC.2019.159
Arnold J.R., Libby W.F., 1949. Age determinations by radiocarbon content: Checks with samples of known age. Science 110, 678–680. https://doi.org/10.1126/science.110.2869.678
Ashmore P., 1999. Single entity dating, in: Evin J. (Ed.), \(^{\textrm{14}}\)C et archéologie: 3ème congrès international // \(^{\textrm{14}}\)C and archaeology: 3rd international symposium; Lyon, 6 - 10 avril 1998, Mémoires de la Société Préhistorique Française. Société Préhistorique Française, Paris, pp. 65–71.
Balen K. van, Bommel B. van, Hees R. van, Hunen M. van, Rhijn J. van, Rooden M. van, 2003. Kalkboek. Het gebruik van kalk als bindmiddel voor metsel- en voegmortels in verleden en heden. Rijksdienst voor de Monumentenzorg, Zeist.
Bayliss A., Marshall P., Dee M.W., Friedrich M., Heaton T.J., Wacker L., 2020. IntCal20 tree rings: An archaeological SWOT analysis. Radiocarbon 1–34. https://doi.org/10.1017/RDC.2020.77
Bayliss A., McCormac F.G., Plicht H. van der, 2004. An illustrated guide to measuring radiocarbon from archaeological samples. Pysics Education 39, 137–144. https://doi.org/10.1088/0031-9120/39/2/001
Beck L., Caffy I., Delqué-Količ E., Moreau C., Dumoulin J.-P., Perron M., Guichard H., Jeammet V., 2018. Absolute dating of lead carbonates in ancient cosmetics by radiocarbon. Communications Chemistry 1. https://doi.org/10.1038/s42004-018-0034-y
Bevan A., Colledge S., Fuller D., Fyfe R., Shennan S., Stevens C., 2017. Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proceedings of the National Academy of Sciences 114, E10524–E10531. https://doi.org/10.1073/pnas.1709190114
Bevan A., Crema E.R., 2020. Rcarbon: Methods for calibrating and analysing radiocarbon dates. https://github.com/ahb108/rcarbon
Boaretto E., 2009. Dating materials in good archaeological contexts: The next challenge for radiocarbon analysis. Radiocarbon 51, 275–281. https://doi.org/10.1017/S0033822200033804
Boudin M., Van Strydonck M., Crombé P., De Clercq W., Dierendonck R.M. van, Jongepier H., Ervynck A., Lentacker A., 2010. Fish reservoir effect on charred food residue \(^{\textrm{14}}\)C dates: Are stable isotope analyses the solution? Radiocarbon 52, 697–705. https://doi.org/10.1017/S0033822200045719
Bronk Ramsey C., 2017. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833. https://doi.org/10.1017/RDC.2017.108
Bronk Ramsey C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. https://doi.org/10.2458/rc.v51i1.3494
Bronk Ramsey C., 2008. Deposition models for chronological records. Quaternary Science Reviews 27, 42–60. https://doi.org/10.1016/j.quascirev.2007.01.019
Bronk Ramsey C., 2001. Development of the radiocarbon program OxCal. Radiocarbon 43, 355–363. https://doi.org/10.1017/S0033822200038212
Bronk Ramsey C., 1998. Probability and dating. Radiocarbon 40, 461–474. https://doi.org/10.1017/S0033822200018348
Bronk Ramsey C., 1995. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430. https://doi.org/10.1017/S0033822200030903
Capuzzo G., Snoeck C., Boudin M., Dalle S., Annaert R., Hlad M., Kontopoulos I., Sabaux C., Salesse K., Sengeløv A., Stamataki E., Veselka B., Warmenbol E., De Mulder G., Tys D., Vercauteren M., 2020. Cremation vs. Inhumation: Modeling cultural changes in funerary practices from the mesolithic to the middle ages in Belgium using kernel density analysis on \(^{\textrm{14}}\)C data. Radiocarbon in press. https://doi.org/10.1017/RDC.2020.88
Contreras D.A., Meadows J., 2014. Summed radiocarbon calibrations as a population proxy: A critical evaluation using a realistic simulation approach. Journal of Archaeological Science 52, 591–608. https://doi.org/10.1016/j.jas.2014.05.030
Cook A.C., Southon J.R., Wadsworth J., 2003. Using radiocarbon dating to establish the age of iron-based artifacts. JOM 55, 15–22. https://doi.org/10.1007/s11837-003-0239-z
Cook G.T., Bonsall C., Hedges R.E.M., McSweeney K., Boroneant V., Bartosiewicz L., Pettitt P.B., 2002. Problems of dating human bones from the Iron Gates. Antiquity 76, 77–85. https://doi.org/10.1017/S0003598X00089821
Crema E.R., Bevan A., Shennan S., 2017. Spatio-temporal approaches to archaeological radiocarbon dates. Journal of Archaeological Science 87, 1–9. https://doi.org/10.1016/j.jas.2017.09.007
Crombé P., Sergant J., Lombaert L., Strydonck M.V., Boudin M., 2009. The Mesolithic and Neolithic site of Verrebroek - Aven Ackers (East Flanders, Belgium) : The radiocarbon evidence. Notae Praehistoricae 29, 15–21. http://biblio.naturalsciences.be/associated_publications/notae-praehistoricae/NP29
De Moor A., Van Strydonck M., Boudin M., Bénazeth D., 2011. Radiocarbon dating of brocaded furnishing textiles and tunics from Katoen Natie and The Musée du Louvre, in: De Moor A., Fluck C. (Eds.), Dress accessories of the 1st millennium AD from Egypt. Lannoo, Tielt, pp. 261–271.
Debruyne S., Ervynck A., Haneca K., 2013. Waterputten als archeologische informatiebron, Handleiding agentschap Onroerend Erfgoed. Agentschap Onroerend Erfgoed, Brussel. https://oar.onroerenderfgoed.be/item/719
Deforce K., 2009. De houtskoolresten, in: Hillewaert B., Hollevoet Y. (Eds.), Vondsten uit vuur: Romeins grafveld met nederzettingssporen aan de Hoge Dijken in Jabbeke. Van de Wiele, Brugge, pp. 38–41.
DeNiro M.J., 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809. https://doi.org/10.1038/317806a0
Ervynck A., 2003. De introductie van het konijn in de Lage Landen: Een verkeerde datering voor vondsten uit een latrine bij de abtswoning van de Sint-Salvatorsabdij te Ename (stad Oudenaarde, prov. Oost-Vlaanderen). Archeologie in Vlaanderen VII, 111–114. https://oar.onroerenderfgoed.be/item/157
Ervynck A., Boudin M., Van Neer W., 2018. Assessing the radiocarbon freshwater reservoir effect for a Northwest-European river system (the Schelde basin, belgium). Radiocarbon 60, 395–417. https://doi.org/10.1017/RDC.2017.148
Ervynck A., Debruyne S., Ribbens R., 2015. Assessment. Een handleiding voor de archeoloog. Agentschap Onroerend Erfgoed, Brussel. https://oar.onroerenderfgoed.be/item/727
Ervynck A., Hillewaert B., Maes A., Van Strydonck M., 2003. Tanning and horn-working at late- and post-medieval Brugge: The organic evidence, in: The environmental archaeology of industry, Symposia of the Association for Environmental Archaeology. Oxbow Books, Oxford, pp. 60–70.
Goslar T., 2001. Absolute production of radiocarbon and the long-term trend of atmospheric radiocarbon. Radiocarbon 43, 743–749. https://doi.org/10.1017/S0033822200041400
Hajdas I., Lindroos A., Heinemeier J., Ringbom Å., Marzaioli F., Terrasi F., Passariello I., Capano M., Artioli G., Addis A., Secco M., Michalska D., Czernik J., Goslar T., Hayen R., Van Strydonck M., Fontaine L., Boudin M., Maspero F., Panzeri L., Galli A., Urbanová P., Guibert P., 2017. Preparation and dating of mortar samples—mortar dating inter-comparison study (modis). Radiocarbon 59, 1845–1858. https://doi.org/10.1017/RDC.2017.112
Haneca K., 2017. Dendrochronologie en erfgoedonderzoek, Handleiding agentschap Onroerend Erfgoed. agentschap Onroerend Erfgoed, Brussel. https://oar.onroerenderfgoed.be/item/437
Harris E.C., 1989. Principles of archaeological stratigraphy, 2nd ed. Academic Press, London. http://harrismatrix.com/download/
Heaton T.J., Köhler P., Butzin M., Bard E., Reimer R.W., Austin W.E.N., Bronk Ramsey C., Grootes P.M., Hughen K.A., Kromer B., Reimer P.J., Adkins J., Burke A., Cook M.S., Olsen J., Skinner L.C., 2020. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal bp). Radiocarbon 62, 779–820. https://doi.org/10.1017/RDC.2020.68
Heinemeier J., Ringbom A., Lindroos A., Sveinbjornsdottir A.E., 2010. Successful AMS C-14 dating of non-hydraulic lime mortars from the medieval churches of the Aland Islands, Finland. Radiocarbon 52, 171–204. https://doi.org/10.1017/S0033822200045124
Hua Q., Barbetti M., Rakowski A.Z., 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55, 2059–2072. https://doi.org/10.2458/azu_js_rc.v55i2.16177
Koch A., Brierley C., Maslin M.M., Lewis S.L., 2019. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quaternary Science Reviews 207, 13–36. https://doi.org/10.1016/j.quascirev.2018.12.004
Millard A.R., 2014. Conventions for reporting radiocarbon determinations. Radiocarbon 56, 555–559. https://doi.org/10.2458/56.17455
Miyake F., Masuda K., Nakamura T., 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4, 1748. https://doi.org/10.1038/ncomms2783
Miyake F., Nagaya K., Masuda K., Nakamura T., 2012. A signature of cosmic-ray increase in ad 774-775 from tree rings in Japan. Nature. https://doi.org/10.1038/nature11123
Münster A., Knipper C., Oelze V.M., Nicklisch N., Stecher M., Schlenker B., Ganslmeier R., Fragata M., Friederich S., Dresely V., Hubensack V., Brandt G., Döhle H.-J., Vach W., Schwarz R., Metzner-Nebelsick C., Meller H., Alt K.W., 2018. 4000 years of human dietary evolution in central Germany, from the first farmers to the first elites. PLOS ONE 13, e0194862. https://doi.org/10.1371/journal.pone.0194862
Olsen J., Heinemeier J., Hornstrup K.M., Bennike P., Thrane H., 2013. Old wood” effect in radiocarbon dating of prehistoric cremated bones? Journal of Archaeological Science 40, 30–34. https://doi.org/10.1016/j.jas.2012.05.034
Quintelier K., Ervynck A., Müldner G., Van Neer W., Richards M.P., Fuller B.T., 2014. Isotopic examination of links between diet, social differentiation, and DISH at the post-medieval Carmelite Friary of Aalst, Belgium: DIET, Social Status and DISH. American Journal of Physical Anthropology 153, 203–213. https://doi.org/10.1002/ajpa.22420
Reimer P.J., 2020. Composition and consequences of the IntCal20 radiocarbon calibration curve. Quaternary Research 96, 22–27. https://doi.org/10.1017/qua.2020.42
Reimer P.J., Austin W.E.N., Bard E., Bayliss A., Blackwell P.G., Bronk Ramsey C., Butzin M., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kromer B., Manning S.W., Muscheler R., Palmer J.G., Pearson C., Van der Plicht J., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Turney C.S.M., Wacker L., Adolphi F., Büntgen U., Capano M., Fahrni S.M., Fogtmann-Schulz A., Friedrich R., Köhler P., Kudsk S., Miyake F., Olsen J., Reinig F., Sakamoto M., Sookdeo A., Talamo S., 2020. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kbp). Radiocarbon 62, 725–757. https://doi.org/10.1017/RDC.2020.41
Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M., Van der Plicht J., 2013. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947
Reimer P.J., Brown T.A., Reimer R.W., 2004. Discussion: Reporting and calibration of post-bomb 14C data. Radiocarbon 46, 1299–1304. https://doi.org/10.1017/S0033822200033154
Snoeck C., Brock F., Schulting R.J., 2014. Carbon exchanges between bone apatite and fuels during cremation: Impact on radiocarbon dates. Radiocarbon 56, 591–602. https://doi.org/10.2458/56.17454
Steele J., 2010. Radiocarbon dates as data: Quantitative strategies for estimating colonization front speeds and event densities. Journal of Archaeological Science 37, 2017–2030. https://doi.org/10.1016/j.jas.2010.03.007
Stuiver M., Polach H.A., 1977. Reporting of C-14 Data - Discussion. Radiocarbon 19, 355–363. https://doi.org/10.1017/S0033822200003672
Stuiver M., Suess H.E., 1966. On the relationship between radiocarbon dates and true sample ages. Radiocarbon 8, 534–540. https://doi.org/10.1017/S0033822200000345
Svetlik I., Jull A.J.T., Molnár M., Povinec P.P., Kolář T., Demján P., Pachnerova Brabcova K., Brychova V., Dreslerová D., Rybníček M., Simek P., 2019. The Best possible Time resolution: How precise could a Radiocarbon dating method be? Radiocarbon 61, 1729–1740. https://doi.org/10.1017/RDC.2019.134
Taylor R.E., 1987. Radiocarbon dating: An archaeological perspective. Academic Press, Orlando.
Turney C.S.M., Palmer J., Maslin M.A., Hogg A., Fogwill C.J., Southon J., Fenwick P., Helle G., Wilmshurst J.M., McGlone M., Bronk Ramsey C., Thomas Z., Lipson M., Beaven B., Jones R.T., Andrews O., Hua Q., 2018. Global peak in atmospheric radiocarbon provides a potential definition for the onset of the anthropocene epoch in 1965. Scientific Reports 8. https://doi.org/10.1038/s41598-018-20970-5
Ubelaker D.H., Thomas C., Olson J.E., 2015. The impact of age at death on the lag time of radiocarbon values in human bone. Forensic Science International 251, 56–60. https://doi.org/10.1016/j.forsciint.2015.03.024
Van der Plicht J., Bronk Ramsey C., Heaton T.J., Scott E.M., Talamo S., 2020. Recent developments in calibration for archaeological and environmental samples. Radiocarbon 62, 1095–1117. https://doi.org/10.1017/RDC.2020.22
Van Rijn P., 2003. Het houtonderzoek, in: Sier M.M. (Ed.), Ellewoutsdijk in de Romeinse tijd, ADC rapport. ADC-ArcheoProjecten, Bunschoten, pp. 104–138. https://doi.org/10.17026/dans-z42-dm4b
Van Strydonck M., 2019. Vijftig jaar \(^{\textrm{14}}\)C-dateringen aan het Koninklijk Instituut voor het Kunstpatrimonium (KIK-IRPA) te Brussel, in: A man of vision: Paul Coremans and the preservation of cultural heritage worldwide, Scientia Artis. Brussel, pp. 40–53.
Van Strydonck M., 2016. Radiocarbon dating. Topics in Current Chemistry 374, 347–364. https://doi.org/10.1007/s41061-016-0011-9
Van Strydonck M., Boudin M., Brande T.V. den, Saverwyns S., Van Acker J., Lehouck A., Vanclooster D., 2016. \(^{\textrm{14}}\)C-dating of the skeleton remains and the content of the lead coffin attributed to the Blessed Idesbald (Abbey of the Dunes, Koksijde, Belgium). Journal of Archaeological Science: Reports 5, 276–284. https://doi.org/10.1016/j.jasrep.2015.11.027
Van Strydonck M., Boudin M., De Mulder G., 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52, 578–586. https://doi.org/10.1017/S0033822200045616
Van Strydonck M., Crombé P., 2005. Radiocarbon dating, in: Crombé P. (Ed.), The last hunter-gatherer-fishermen in Sandy Flanders (NW Belgium): The Verrebroeck and Doel excavation projects. Volume 1. Academia Press, Ghent, pp. 180–212.
Van Strydonck M., Crombé P., Maes A., 2001. The site of Verrebroek “dok” and its contribution to the absolute dating of the Mesolithic in the Low Countries. Radiocarbon 43, 997–1005. https://doi.org/10.1017/S0033822200041667
Vanderhoeven A., Arts A., Borgers K., Celis D., Cryns J., De Winter N., Van den Hove P., Vander Ginst V., Vynckier G., 2018. De sporen uit de laat-Romeinse en vroegmiddeleeuwse periode, in: Vanderhoeven A., Ervynck A. (Eds.), Het archeologisch en bouwhistorisch onderzoek van de O.L.V.-basiliek van Tongeren (1997-2013) Deel 4: De laat-Romeinse en vroegmiddeleeuwse periode, Relicta Monografieën. agentschap Onroerend Erfgoed, Brussel, pp. 15–141. https://oar.onroerenderfgoed.be/item/708
Williams A.N., 2012. The use of summed radiocarbon probability distributions in archaeology: A review of methods. Journal of Archaeological Science 39, 578–589. https://doi.org/10.1016/j.jas.2011.07.014